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We present numerical results on spontaneous symmetry breaking strain localization in axisymmetric triaxial
shear tests of granular materials. We simulated shear band formation using the three-dimensional distinct
element method with spherical particles. We demonstrate that the local shear intensity, the angular velocity of
the grains, the coordination number, and the local void ratio are correlated and any of them can be used to
identify shear bands; however, the latter two are less sensitive. The calculated shear band morphologies are in
good agreement with those found experimentally. We show that boundary conditions play an important role.
We discuss the formation mechanism of shear bands in the light of our observations and compare the results
with experiments. At large strains, with enforced symmetry, we found strain hardening.
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I. INTRODUCTION

The description of the rheological properties of dry granu-
lar media is a key question which controls the ability to
handle �mixing, storing, transporting, etc.� these particulate
systems. An interesting and sometimes annoying feature of
such materials is strain localization, which appears almost
always when a sample is subjected to deformation. The mor-
phology of these narrow domains �shear bands� is far from
being understood.

Two-dimensional and boundary induced shear band
shapes have a vast literature dating back decades including
both numerical and experimental studies. Three-dimensional
studies have a major drawback in the difficulty of getting
information from inside the sample. However, in the past 20
years they gained increasing attention as experimental tools
like computer tomography �CT� became available. Such ex-
perimental studies �1–4� revealed complex localization pat-
terns and shear band morphologies depending on the test
conditions.

In this paper we focus on triaxial tests, which in general
are elementary tests, performed to obtain mechanical proper-
ties of soils. The most common axisymmetric triaxial test
consists of a cylindrical specimen enclosed between two end
platens and surrounded by a rubber membrane on which an
external pressure is applied �see, for example, �2��. The end
platens are pressed against each other in a controlled way,
either with constant velocity �strain control� or with constant
force �stress control�. The force resulting on the platens or
the displacement rate of the platens is recorded as well as the
volume change of the specimen.

We report a numerical study of triaxial tests of cohesion-
less granular materials based on a three-dimensional distinct
element method �DEM�. We show that depending on the
boundary conditions different shear band morphologies can
be observed similarly to experiments. We identify the shear
bands by calculating the local shear intensity and show that it
is correlated with the angular velocity of the particles and

also with the local void ratio and the coordination number,
which give alternative ways to detect shear bands and further
verification of our results.

II. SIMULATIONS

We used a standard DEM with Hertz contact model �5�
and appropriate damping �6� combined with a frictional
spring-dashpot model �7,8�. The triaxial tests were per-
formed on vertical cylindrical samples �see Fig. 1� of diam-
eter D=22 mm and height H=46 mm �i.e., the slenderness
was H /D�2.1, similar to the value in most experiments�.
Each sample consisted of 27 000 spherical particles with the
same mass density �=7.5�103 kg/m3. The particles had a
Gaussian size distribution. The mean particle diameter was
d=0.9 mm. The standard deviation of the particle diameters
was �d=0.025 mm.

The normal Fn and tangential Ft components of the con-
tact force were calculated as

Fn = �n�n
3/2 − �n�n

1/2vn, �1�

Ft = �t�t − �tvt, �2�

where �n=106 N/m3/2, �t=104 N/m, �n=1 N s/m3/2, and
�t=1 N s/m are the normal and tangential stiffness and
damping coefficients, �n and �t are the normal and tangential
displacements, and vn and vt are the normal and tangential
relative velocities.

The normal displacement was calculated from the relative
position, the size, and the shape of the bodies in contact. The
tangential displacement was calculated by integrating the
tangential velocity in the contact plane during the lifetime of
the contact. The Coulomb law limits the �tangential� friction
force to �Fn �where �=0.5 is the used coefficient of fric-
tion�. To allow for sliding contacts, we limited the length of
the tangential displacement to �Fn /�t. �For a review on the
DEM see �7,8� and references therein. For more details on
our implementation see �9�.�
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The translational motion of bodies is calculated with Ver-
let’s leapfrog method. The rotational state is integrated in
quaternion representation with Euler’s method. With the
above stiffness and damping coefficients, the inverse of the
average eigenfrequency of contacts, in both normal and tan-
gential direction, is more than one order of magnitude larger
than the used integration time step �t=10−6 s. This assures
that the noise level induced by numerical errors and grain
elasticity is kept low.

The initial configuration was generated by randomly plac-
ing the grains in a tall solid cylinder having height h=3H
and width D. The maximum allowed initial grain overlap
was 1%. The upper platen and the particles were given
downward velocities v�z /h depending on their vertical po-
sition z measured from the fixed bottom platen. These con-
ditions lead to an almost simultaneous first contact of the
bodies. The system was stabilized with a force applied on the
upper platen. This was switched on when the inner pressure
of the sample could compensate it. In preparation �and later
in the tests� we used zero gravity. The deposition method
described above is known to produce a homogeneous sys-
tem. During the preparation phase, the friction of the par-
ticles was switched off to allow for generation of dense
samples. �For a review on sphere packings see �10�.�

The solid cylinder used in preparation was replaced by an
elastic membrane in the tests. The elastic membrane was
modeled with overlapping spheres having equal diameter
dm=1 mm and equal mass density �m=100 kg/m3, and ini-
tially forming a triangular lattice on the external surface of
the cylinder. The “membrane nodes” could not rotate and
were interconnected with linear springs having an elongation
equal to the relative distance of the nodes �initially 0.5 mm�.
The stiffness of the springs �s=0.5 N/m was chosen such
that the particles could not escape by passing through the
membrane. Additionally a homogeneous confining pressure
�c=500 N/m2 was applied on the membrane. This was
simulated by calculating the forces acting on the triangular
facets formed by connected membrane nodes.

A similar model was used by Tsunekawa and Iwashita
�11�, who applied the confining pressure directly on the ex-

ternal particles in a very similar way. However, their ap-
proach requires the computationally expensive identification
of external particles and a Delaunay triangulation. Sakaguchi
and Mühlhaus �12� used a membrane model similar to ours
but without an explicit confining pressure, relying only on
the stiffness of the springs.

The bottom platen was fixed during both preparation and
test phases. The upper platen could not tilt in the preparation
phase, but in certain tests it could freely tilt along any hori-
zontal axis with rotational inertia I=10−7 kg m2. During the
tests, the samples were compressed by moving the upper
platen in a vertical direction downwards with a constant ve-
locity �strain control�. Starting from the same initial condi-
tion, four different runs—denoted by A, B, C, and D—were
executed. Two different compression velocities were used: A
base value u1=10 mm/s �in tests A and B� and a twice larger
value u2=2u1 �in tests C and D�. Tilting of the upper platen
was enabled in tests A and C and disabled in tests B and D.

III. RESULTS

A. Local shear intensity

We define the local shear intensity S by generalizing its
two-dimensional definition given by Daudon et al. �13�.
First, the regular triangulation �14� of the particle system is
calculated �15�. The displacements of the particles �relative
to a previous state� are known from the DEM simulation. We
extend the displacement field to the whole volume of the
sample with a linear interpolation over the tetrahedra of the
regular triangulation. For each particle we identify the inci-
dent triangulation cells �tetrahedra� that define a discrete par-
ticle neighborhood. The particles at the sample’s boundary,
having infinite incident cells, are skipped �i.e., no local shear
intensity is defined for them�. The discrete neighborhood of a
particle is a surrounding polyhedron with first-neighbor par-
ticles at the corners.

We define the deformation gradient tensor with the partial
�space� derivatives �iuj of the displacement vector u. In a
neighborhood 	 of volume V, the components of the mean
deformation gradient tensor are calculated as

�uij� =
1

V
�

	

�iujdV . �3�

Using the Gauss-Ostrogradski theorem the volume integral
can be transformed into a closed surface integral over the
boundary �	 of 	, leading to

�uij� =
1

V
	

�	

niujdS , �4�

where n is the exterior normal along the boundary. We cal-
culate the local deformation gradient tensor by applying the
above formula to discrete neighborhoods and using the linear
interpolation of the particle displacements. In this case the
integral can be reduced to a summation over triangular
facets.

The symmetric part of the local deformation gradient ten-
sor is a macroscopic strain tensor derived from particle dis-

FIG. 1. �Color online� �a� A granular sample was subjected to
axial load and confining pressure. �b� The rubber membrane sur-
rounding the sample was simulated by overlapping spheres initially
arranged in a triangular lattice. �c� The neighboring spheres were
interconnected with linear springs. The confining pressure acted on
the triangular facets.
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placements. Using the eigenvalues 
k of this macroscopic
strain tensor, we define the local shear intensity as

S = max
k


k −

1

3�
l


l
 . �5�

We note that we disregard the elastic deformation and
rotation of the grains, since we are interested in the identifi-
cation of the shear bands, which are strongly linked to geo-
metric effects. However, for constitutive models, a more
complete treatment of the strain would be needed �16�.

B. Shear band morphologies

Taking cross sections of the sheared samples and coloring
the grains according to the local shear intensity S, we could
identify shear bands �see Fig. 2� and compared them with
experiments. In experiments the CT scans show the volume
fraction difference between the bulk and the shear band. In
the next section we justify the comparison of the volume
fraction and local shear intensity.

Our simulations are run at zero gravity and low confining
pressure in conditions very similar to the experiments of Ba-
tiste et al. �3�. The shear band patterns found in their experi-
ments and our simulations are also very close to those found
in experiments under normal gravity and high confining
pressure by Desrues et al. �2�, who also studied the case of a
tilting upper platen. We compared our results to both experi-
ments.

We found that the absence of enforced axisymmetry leads
to spontaneous symmetry breaking. When tilting of the upper
platen is enabled, internal instabilities can develop into a
localized deformation along a failure plane �see Fig. 2�c��.
Nontilting platens act as a stabilizing factor leading to an
axisymmetric hourglass shaped shear band with two conical
surfaces and complex localization patterns around them �see
Fig. 2�d��. This is in full accordance with the experimental
results of Desrues et al. �2�. For the nontilting case
Tsunekawa and Iwashita �11� found in DEM simulations
similar localization patterns; however, they did not investi-
gate the tilting case.

FIG. 2. �Color online� Cross sections �a�, �c�, �e�, �f�, �g� of sample C and �b�, �d�, �h�, �i�, �j� of sample D shown at 10% axial strain. �k�,
�l�, �m� present CT scans �3� �Experiment No. F2075�. The vertical cross sections �a�–�d� were taken at the middle of the sample. The
horizontal cross sections were taken at different heights: close to the top �e�, �h�, �k�, at the middle �g�, �j�, �m�, and in between �f�, �i�, �l�.
The gray �red� color encodes the local shear intensity �c�–�j� and the local void ratio on �k�–�m�. �a�, �b� show the velocity field.
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In the nontilting case, the horizontal cross sections of
Figs. 2�h�–2�j� can be compared with the experimental re-
sults of Batiste et al. �3�. They reported the same type of
shear band morphologies for these boundary conditions. Fig-
ures 2�k�–2�m� show CT scans from their triaxial shear tests
executed in microgravity aboard a NASA Space Shuttle. Our
simulations used similar setup and similar confining pres-
sure. Good agreement of shear band shapes �including their
nontrivial structure� can be recognized in spite of the rather
limited number of grains in our simulations. �Note that the
details reproduce better in the color version of the figure.�

In the case of a tilting upper platen the shear bands are not
totally plane—as can be seen on horizontal cross sections
taken close to the platens—but follow the curvature of the
boundary. The same was found experimentally by Desrues et
al. �2�. In the vertical cross sections shown in Figs. 2�c� and
2�d�, the shear bands found are in good agreement with
changes in the velocity field shown in Figs. 2�a� and 2�b�.
This justifies the shear band identification method based on
the local shear intensity. We have also investigated alterna-
tive methods.

C. Alternative methods of shear band identification

It is widely known that dense granular materials dilate
during shear. In some experiments �e.g., experiments based
on CT �2,3�� the local void ratio is used to identify the shear
bands. To confirm the shear band identification method pre-
sented and the shear band morphologies found, we have in-
vestigated the correlation between the local void ratio � and
the local shear intensity S. The void ratio was measured us-
ing the regular triangulation �14,15� of the spherical par-
ticles. The volume of the regular Voronoi cells Vc and the
volume of the grains Vg define the local void ratio
�= �Vc−Vg� /Vg.

In numerical simulations �for spheres of nearly equal
size�, a good alternative to the local void ratio � is the coor-
dination number Z �defined by the number of contacts�,
which decreases as � increases. Its main advantage is that it
can be defined exactly and calculated quickly; however, if
the size distribution is wide, a nontrivial particle size scaling
has to be taken into account.

The existence of particle rotations in shear bands has been
known to experimentalists for a long time �see, e.g., �17��. It
was also evidenced in simulations by Herrmann et al. �18�.
In our simulations, we have also measured for each grain the
absolute value of the angular velocity R and tested its corre-
lation with the local shear intensity S.

All the quantities mentioned above �the local void ratio �,
the coordination number Z, the angular velocity R, and the
local shear intensity S� are defined for each particle. We
checked their correlation with a histogram technique using
the values calculated for different particles as different sta-
tistical samples. The �, Z, and R values were averaged for
each �logarithmic� histogram bin of S. We also calculated the
total averages �av, Zav, Rav, and Sav. On the quantities
�=ln�X /Xav� �where X is one of �, Z, and R� we applied
different linear transformations F���=
��−�0� �shift and

scaling� to achieve data collapse of F(ln�X /Xav�) as a func-
tion of ln�S /Sav� �see Fig. 3�.

The scaling term 
 of F shows the sensitivity of the R, Z,
and � quantities with respect to the local shear intensity S.
We found 
=1 for the angular velocity, 
=−9 for the coor-
dination number, and 
=27 for the local void ratio. �Note
that Z decreases as S increases.� The fluctuations were pro-
portional to �


. Regarding shear band identification, this
means that the angular velocity is essentially equivalent to
the local shear intensity. However, the coordination number
and the local void ratio are less sensitive, and they exhibit
large fluctuations due to random packing and random rear-
rangements. For this reason they need more spatial and/or
temporal averaging to achieve the same accuracy.

D. Stress-strain relation

In order to compare to most common experimental re-
sults, we measured the stress � on the upper platen, and
calculated the stress ratio � /�0, where �0 denotes the initial
stress. As the axial strain increases, the response of the
granular sample �the stress ratio� increases until it reaches a
peak value and then decreases �see Fig. 4�. According to Fig.
4, up to 15% axial strain there is no significant difference in
stress-strain relation measured in different simulation runs,
irrespective of the strain rate and tilting of the upper platen.
�We have not tested the dependence on material parameters
and confining pressure.�

The presented strain softening effect is a basic observa-
tion of triaxial shear tests of dense granular specimens �see,
for example, �19� and Fig. 5�. Any local deformation due to
shear is followed by a dilatation, resulting in a decrease of
the force-bearing capacity of the material, which further in-
tensifies the deformation, leading to failure. In our simula-
tions we observed pronounced shear bands around 10% axial
strain, which is in good agreement with the experimental
results.

After about 15% axial strain the different boundary con-
ditions and shear band shapes result in different stress-strain

FIG. 3. Correlation of the local shear intensity S with the local
void ratio �� , � �, the coordination number �Z , � �, and the angular
velocity of the grains �R , + �. X is one of �, Z, and R. F denotes a
linear transformation different for each data set. All quantities are
scaled by average values �Xav ,Sav�. The data are collected from
four samples at 10% axial strain. See text for more details.
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curves. In the nontilting case, the geometry and the
hourglass-shaped shear band force the particles to enter and
leave the failure zone. In this case, a stable slipping mode
cannot be formed. As the test sample is further compressed,
it opposes the compression more and more firmly �see curves
�b� and �d� on Fig. 4�, resulting in increasing stress ratio �i.e.,
strain hardening�. In the tilting case, the upper part of the
sample moves as a single block. The formed planar shear
band allows for a stable slipping mode with nearly constant
stress until boundary effects come into play �see curves �a�
and �c� on Fig. 4�.

IV. CONCLUSIONS

Triaxial shear test simulations based on the DEM were
executed and different shear band morphologies known from
experiments were reproduced �20�. We have shown that in
triaxial shear tests symmetry breaking strain localization can
develop spontaneously if the axial symmetry is not enforced
by nontilting platens. To our knowledge it is the first time
that such symmetry breaking strain localization was repro-
duced in DEM simulations.

We generalized the shear intensity definition of Daudon et
al. �13� to three dimensions and used it to identify shear

bands. To be able to compare to experiments, we also tested
alternative methods of shear band identification. We found
strong correlation of the local shear intensity with the angu-
lar velocity of the grains, the coordination number, and the
local void ratio. This result justifies our method and proves
once more the known experimental and numerical findings
that shear bands are characterized by dilation and rotation of
the grains. Regarding shear band identification, the coordina-
tion number and the local void ratio are found to be less
sensitive than the local shear intensity and the angular veloc-
ity of the grains.

We have also measured the stress-strain relation of the
compressed samples. Strain softening was identified in good
agreement with experimental results. We have also found a
strain hardening effect at large strains in the nontilting case
and explained it in terms of geometry and shear band mor-
phology. However, this might be valid only for the tested
material parameters and confining pressure. We have no
knowledge of experiments focusing on this particular ques-
tion. In general, the agreement of our results with the experi-
mental results is very good, even if the system size �number
of particles� in our simulations is much smaller than in ex-
periments.
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